Papers | Parallel Computing
2024
Bruno Casella, Iacopo Colonnelli, Gianluca Mittone, Robert Birke, Walter Riviera, Antonio Sciarappa, Carlo Cavazzoni, Marco Aldinucci
A Performance Analysis for Confidential Federated Learning Proceedings Article
In: Proceedings of the 2024 Deep Learning Security and Privacy Workshop, IEEE Symposium on Security and Privacy 2024, San Francisco, CA, 2024.
Abstract | Links | BibTeX | Tags: ai, confidential, epi, icsc
@inproceedings{24:casella:sgx,
title = {A Performance Analysis for Confidential Federated Learning},
author = {Bruno Casella and Iacopo Colonnelli and Gianluca Mittone and Robert Birke and Walter Riviera and Antonio Sciarappa and Carlo Cavazzoni and Marco Aldinucci},
url = {https://iris.unito.it/retrieve/b5877a97-2d8d-4e95-8791-0aa4a1b953b3/DLSP___CONFIDENTIAL_FL.pdf},
doi = {10.1109/SPW63631.2024.00009},
year = {2024},
date = {2024-05-01},
booktitle = {Proceedings of the 2024 Deep Learning Security and Privacy Workshop, IEEE Symposium on Security and Privacy 2024},
address = {San Francisco, CA},
abstract = {Federated Learning (FL) has emerged as a solution to preserve data privacy by keeping the data locally on each participant's device. However, FL alone is still vulnerable to attacks that can cause privacy leaks. Therefore, it becomes necessary to take additional security measures at the cost of increasing runtimes. The Trusted Execution Environment (TEE) approach promises to offer the highest degree of security during execution. However, TEEs suffer from memory limits which prevent safe end-to-end FL training of modern deep models. State-of- the-art approaches limit secure training to selected layers, failing to avert the full spectrum of attacks or adopt layer-wise training affecting model performance. We benchmark the usage of a library OS (LibOS) to run the full, unmodified end-to-end FL training inside the TEE. We extensively evaluate and model the overhead of the different security mechanisms needed to protect the data and model during computation (TEE), communication (TLS), and storage (disk encryption). The obtained results across three datasets and two models demonstrate that LibOSes are a viable way to seamlessly inject security into FL with limited overhead (at most 2x), offering valuable guidance for researchers and developers aiming to apply FL in data-security-focused contexts.},
keywords = {ai, confidential, epi, icsc},
pubstate = {published},
tppubtype = {inproceedings}
}
Lorenzo Brescia, Iacopo Colonnelli, Marco Aldinucci
Performance Analysis on DNA Alignment Workload with Intel SGX Multithreading Proceedings Article
In: Antelmi, Alessia, Carlini, Emanuele, Dazzi, Patrizio (Ed.): Proceedings of BigHPC2024: Special Track on Big Data and High-Performance Computing, co-located with the 3textsuperscriptrd Italian Conference on Big Data and Data Science, ITADATA2024, CEUR-WS.org, 2024.
Abstract | Links | BibTeX | Tags: confidential, icsc
@inproceedings{24:brescia:itadata,
title = {Performance Analysis on DNA Alignment Workload with Intel SGX Multithreading},
author = {Lorenzo Brescia and Iacopo Colonnelli and Marco Aldinucci},
editor = {Alessia Antelmi and Emanuele Carlini and Patrizio Dazzi},
url = {https://ceur-ws.org/Vol-3785/paper107.pdf},
year = {2024},
date = {2024-01-01},
booktitle = {Proceedings of BigHPC2024: Special Track on Big Data and High-Performance Computing, co-located with the 3textsuperscriptrd Italian Conference on Big Data and Data Science, ITADATA2024},
volume = {3785},
publisher = {CEUR-WS.org},
series = {CEUR Workshop Proceedings},
abstract = {Data confidentiality is a critical issue in the digital age, impacting interactions between users and public services and between scientific computing organizations and Cloud and HPC providers. Performance in parallel computing is essential, yet techniques for establishing Trusted Execution Environments (TEEs) to ensure privacy in remote environments often negatively impact execution time. This paper aims to analyze the performance of a parallel bioinformatics workload for DNA alignment (Bowtie2) executed within the confidential enclaves of Intel SGX processors. The results provide encouraging insights regarding the feasibility of using SGX-based TEEs for parallel computing on large datasets. The findings indicate that, under conditions of high parallelization and with twice as many threads, workloads executed within SGX enclaves perform, on average, 15% faster than non-confidential execution. This empirical demonstration supports the potential of SGX-based TEEs to effectively balance the need for privacy with the demands of high-performance computing.},
keywords = {confidential, icsc},
pubstate = {published},
tppubtype = {inproceedings}
}
Lorenzo Brescia, Marco Aldinucci
Secure Generic Remote Workflow Execution with TEEs Proceedings Article
In: Proc. of the 2nd Workshop on Workflows in Distributed Environments (WiDE), pp. 8-13, ACM, Athens, Greece, 2024.
Abstract | Links | BibTeX | Tags: confidential, icsc
@inproceedings{23:brescia:wide,
title = {Secure Generic Remote Workflow Execution with TEEs},
author = {Lorenzo Brescia and Marco Aldinucci},
doi = {10.1145/3642978.3652834},
year = {2024},
date = {2024-01-01},
booktitle = {Proc. of the 2nd Workshop on Workflows in Distributed Environments (WiDE)},
pages = {8-13},
publisher = {ACM},
address = {Athens, Greece},
abstract = {In scientific environments, the frequent need to process substantial volumes of data poses a common challenge. Individuals tasked with executing these computations frequently encounter a deficit in local computational resources, leading them to opt for the facilities of a Cloud Service Provider (CSP) for data processing. However, the data subjected to these calculations may be subject to confidentiality constraints. This paper introduces a proof-of-concept framework that leverages Gramine LibOS and Intel SGX, enabling the protection of generic remote workflow computations through SGX enclaves as Trusted Execution Environments (TEEs). The framework entails the delineation of user and CSP behavior and has been implemented using Bash scripts. Furthermore, an infrastructure has been designed for the Data Center Attestation Primitives (DCAP) remote attestation mechanism, wherein the user gains trust in the proper instantiation of the enclave within the CSP. To assess the framework efficacy, it has been tested on two distinct workflows, one trivial and the other involving real-world bioinformatics applications for processing DNA data. The performance study revealed that the framework incurred an acceptable overhead, ranging from a factor of x1.4 to x1.8 compared to unsafe execution practice.},
howpublished = {Proceedings of the 2nd Workshop on Workflows in Distributed Environments},
keywords = {confidential, icsc},
pubstate = {published},
tppubtype = {inproceedings}
}
2023
Gianluca Mittone, Walter Riviera, Iacopo Colonnelli, Robert Birke, Marco Aldinucci
Model-Agnostic Federated Learning Proceedings Article
In: Euro-Par 2023: Parallel Processing, pp. 383–396, Springer, Limassol, Cyprus, 2023.
Abstract | Links | BibTeX | Tags: ai, confidential, eupilot, icsc, riscv
@inproceedings{23:mittone:mafl,
title = {Model-Agnostic Federated Learning},
author = {Gianluca Mittone and Walter Riviera and Iacopo Colonnelli and Robert Birke and Marco Aldinucci},
url = {https://doi.org/10.1007/978-3-031-39698-4_26},
doi = {10.1007/978-3-031-39698-4_26},
year = {2023},
date = {2023-08-01},
booktitle = {Euro-Par 2023: Parallel Processing},
volume = {14100},
pages = {383–396},
publisher = {Springer},
address = {Limassol, Cyprus},
institution = {Computer Science Department, University of Torino},
abstract = {Since its debut in 2016, Federated Learning (FL) has been tied to the inner workings of Deep Neural Networks (DNNs). On the one hand, this allowed its development and widespread use as DNNs proliferated. On the other hand, it neglected all those scenarios in which using DNNs is not possible or advantageous. The fact that most current FL frameworks only allow training DNNs reinforces this problem. To address the lack of FL solutions for non-DNN-based use cases, we propose MAFL (Model-Agnostic Federated Learning). MAFL marries a model-agnostic FL algorithm, AdaBoost.F, with an open industry-grade FL framework: Intel OpenFL. MAFL is the first FL system not tied to any specific type of machine learning model, allowing exploration of FL scenarios beyond DNNs and trees. We test MAFL from multiple points of view, assessing its correctness, flexibility and scaling properties up to 64 nodes. We optimised the base software achieving a 5.5x speedup on a standard FL scenario. MAFL is compatible with x86-64, ARM-v8, Power and RISC-V.},
keywords = {ai, confidential, eupilot, icsc, riscv},
pubstate = {published},
tppubtype = {inproceedings}
}
Gianluca Mittone, Nicolò Tonci, Robert Birke, Iacopo Colonnelli, Doriana Medić, Andrea Bartolini, Roberto Esposito, Emanuele Parisi, Francesco Beneventi, Mirko Polato, Massimo Torquati, Luca Benini, Marco Aldinucci
Experimenting with Emerging RISC-V Systems for Decentralised Machine Learning Proceedings Article
In: 20th ACM International Conference on Computing Frontiers (CF '23), ACM, Bologna, Italy, 2023, ISBN: 979-8-4007-0140-5/23/05, (https://arxiv.org/abs/2302.07946).
Abstract | Links | BibTeX | Tags: ai, confidential, eupilot, HPC, icsc, riscv
@inproceedings{23:mittone:fl-riscv,
title = {Experimenting with Emerging RISC-V Systems for Decentralised Machine Learning},
author = {Gianluca Mittone and Nicolò Tonci and Robert Birke and Iacopo Colonnelli and Doriana Medić and Andrea Bartolini and Roberto Esposito and Emanuele Parisi and Francesco Beneventi and Mirko Polato and Massimo Torquati and Luca Benini and Marco Aldinucci},
url = {https://dl.acm.org/doi/pdf/10.1145/3587135.3592211},
doi = {10.1145/3587135.3592211},
isbn = {979-8-4007-0140-5/23/05},
year = {2023},
date = {2023-05-01},
booktitle = {20th ACM International Conference on Computing Frontiers (CF '23)},
publisher = {ACM},
address = {Bologna, Italy},
institution = {Computer Science Department, University of Torino},
abstract = {Decentralised Machine Learning (DML) enables collaborative machine learning without centralised input data. Federated Learning (FL) and Edge Inference are examples of DML. While tools for DML (especially FL) are starting to flourish, many are not flexible and portable enough to experiment with novel systems (e.g., RISC-V), non-fully connected topologies, and asynchronous collaboration schemes. We overcome these limitations via a domain-specific language allowing to map DML schemes to an underlying middleware, i.e. the FastFlow parallel programming library. We experiment with it by generating different working DML schemes on two emerging architectures (ARM-v8, RISC-V) and the x86-64 platform. We characterise the performance and energy efficiency of the presented schemes and systems. As a byproduct, we introduce a RISC-V porting of the PyTorch framework, the first publicly available to our knowledge.},
note = {https://arxiv.org/abs/2302.07946},
keywords = {ai, confidential, eupilot, HPC, icsc, riscv},
pubstate = {published},
tppubtype = {inproceedings}
}
Gianluca Mittone, Filip Svoboda, Marco Aldinucci, Nicholas D. Lane, Pietro Lio
A Federated Learning Benchmark for Drug-Target Interaction Proceedings Article
In: Companion Proceedings of the ACM Web Conference 2023 (WWW '23 Companion), ACM, Austin, Texas, 2023, ISBN: 978-1-4503-9419-2/23/04, (https://arxiv.org/abs/2302.07684).
Abstract | Links | BibTeX | Tags: ai, confidential, eupilot, icsc
@inproceedings{23:mittone:dti,
title = {A Federated Learning Benchmark for Drug-Target Interaction},
author = {Gianluca Mittone and Filip Svoboda and Marco Aldinucci and Nicholas D. Lane and Pietro Lio},
url = {https://hdl.handle.net/2318/1898472},
doi = {10.1145/3543873.3587687},
isbn = {978-1-4503-9419-2/23/04},
year = {2023},
date = {2023-04-01},
booktitle = {Companion Proceedings of the ACM Web Conference 2023 (WWW '23 Companion)},
publisher = {ACM},
address = {Austin, Texas},
institution = {Computer Science Department, University of Torino},
abstract = {Aggregating pharmaceutical data in the drug-target interaction (DTI) domain has the potential to deliver life-saving breakthroughs. It is, however, notoriously difficult due to regulatory constraints and commercial interests. This work proposes the application of federated learning, which we argue to be reconcilable with the industry's constraints, as it does not require sharing of any information that would reveal the entities' data or any other high-level summary of it. When used on a representative GraphDTA model and the KIBA dataset it achieves up to 15 percent improved performance relative to the best available non-privacy preserving alternative. Our extensive battery of experiments shows that, unlike in other domains, the non-IID data distribution in the DTI datasets does not deteriorate FL performance. Additionally, we identify a material trade-off between the benefits of adding new data, and the cost of adding more clients.},
note = {https://arxiv.org/abs/2302.07684},
keywords = {ai, confidential, eupilot, icsc},
pubstate = {published},
tppubtype = {inproceedings}
}
Bruno Casella, Roberto Esposito, Antonio Sciarappa, Carlo Cavazzoni, Marco Aldinucci
Experimenting with Normalization Layers in Federated Learning on non-IID scenarios Technical Report
Computer Science Department, University of Torino 2023.
Abstract | Links | BibTeX | Tags: confidential, epi, icsc
@techreport{23:casella:normalization,
title = {Experimenting with Normalization Layers in Federated Learning on non-IID scenarios},
author = {Bruno Casella and Roberto Esposito and Antonio Sciarappa and Carlo Cavazzoni and Marco Aldinucci},
url = {https://arxiv.org/pdf/2303.10630.pdf},
year = {2023},
date = {2023-01-01},
institution = {Computer Science Department, University of Torino},
abstract = {Training Deep Learning (DL) models require large, high-quality datasets, often assembled with data from different institutions. Federated Learning (FL) has been emerging as a method for privacy-preserving pooling of datasets employing collaborative training from different institutions by iteratively globally aggregating locally trained models. One critical performance challenge of FL is operating on datasets not independently and identically distributed (non-IID) among the federation participants. Even though this fragility cannot be eliminated, it can be debunked by a suitable optimization of two hyperparameters: layer normalization methods and collaboration frequency selection. In this work, we benchmark five different normalization layers for training Neural Networks (NNs), two families of non-IID data skew, and two datasets. Results show that Batch Normalization, widely employed for centralized DL, is not the best choice for FL, whereas Group and Layer Normalization consistently outperform Batch Normalization. Similarly, frequent model aggregation decreases convergence speed and mode quality.},
keywords = {confidential, epi, icsc},
pubstate = {published},
tppubtype = {techreport}
}
Yasir Arfat, Gianluca Mittone, Iacopo Colonnelli, Fabrizio D'Ascenzo, Roberto Esposito, Marco Aldinucci
Pooling critical datasets with Federated Learning Proceedings Article
In: 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2023, pp. 329–337, IEEE, Napoli, Italy, 2023.
Abstract | Links | BibTeX | Tags: admire, ai, cardio, confidential, hpc4ai
@inproceedings{23:praise-fl:pdp,
title = {Pooling critical datasets with Federated Learning},
author = {Yasir Arfat and Gianluca Mittone and Iacopo Colonnelli and Fabrizio D'Ascenzo and Roberto Esposito and Marco Aldinucci},
url = {https://iris.unito.it/retrieve/491e22ec-3db5-4989-a063-085a199edd20/23_pdp_fl.pdf},
doi = {10.1109/PDP59025.2023.00057},
year = {2023},
date = {2023-01-01},
booktitle = {31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2023},
pages = {329–337},
publisher = {IEEE},
address = {Napoli, Italy},
abstract = {Federated Learning (FL) is becoming popular in different industrial sectors where data access is critical for security, privacy and the economic value of data itself. Unlike traditional machine learning, where all the data must be globally gathered for analysis, FL makes it possible to extract knowledge from data distributed across different organizations that can be coupled with different Machine Learning paradigms. In this work, we replicate, using Federated Learning, the analysis of a pooled dataset (with AdaBoost) that has been used to define the PRAISE score, which is today among the most accurate scores to evaluate the risk of a second acute myocardial infarction. We show that thanks to the extended-OpenFL framework, which implements AdaBoost.F, we can train a federated PRAISE model that exhibits comparable accuracy and recall as the centralised model. We achieved F1 and F2 scores which are consistently comparable to the PRAISE score study of a 16- parties federation but within an order of magnitude less time.},
keywords = {admire, ai, cardio, confidential, hpc4ai},
pubstate = {published},
tppubtype = {inproceedings}
}