Papers | Parallel Computing
2022
Marco Aldinucci, David Atienza, Federico Bolelli, Mónica Caballero, Iacopo Colonnelli, José Flich, Jon Ander Gómez, David González, Costantino Grana, Marco Grangetto, Simone Leo, Pedro López, Dana Oniga, Roberto Paredes, Luca Pireddu, Eduardo Quiñones, Tatiana Silva, Enzo Tartaglione, Marina Zapater
In: Curry, Edward, Auer, Sören, Berre, Arne J., Metzger, Andreas, Perez, Maria S., Zillner, Sonja (Ed.): Technologies and Applications for Big Data Value, pp. 183–202, Springer International Publishing, Cham, 2022, ISBN: 978-3-030-78307-5.
Abstract | Links | BibTeX | Tags: deephealth, streamflow
@incollection{22:TABDV,
title = {The DeepHealth Toolkit: A Key European Free and Open-Source Software for Deep Learning and Computer Vision Ready to Exploit Heterogeneous HPC and Cloud Architectures},
author = {Marco Aldinucci and David Atienza and Federico Bolelli and Mónica Caballero and Iacopo Colonnelli and José Flich and Jon Ander Gómez and David González and Costantino Grana and Marco Grangetto and Simone Leo and Pedro López and Dana Oniga and Roberto Paredes and Luca Pireddu and Eduardo Quiñones and Tatiana Silva and Enzo Tartaglione and Marina Zapater},
editor = {Edward Curry and Sören Auer and Arne J. Berre and Andreas Metzger and Maria S. Perez and Sonja Zillner},
url = {https://link.springer.com/content/pdf/10.1007/978-3-030-78307-5_9.pdf},
doi = {10.1007/978-3-030-78307-5_9},
isbn = {978-3-030-78307-5},
year = {2022},
date = {2022-01-01},
booktitle = {Technologies and Applications for Big Data Value},
pages = {183–202},
publisher = {Springer International Publishing},
address = {Cham},
chapter = {9},
abstract = {At the present time, we are immersed in the convergence between Big Data, High-Performance Computing and Artificial Intelligence. Technological progress in these three areas has accelerated in recent years, forcing different players like software companies and stakeholders to move quickly. The European Union is dedicating a lot of resources to maintain its relevant position in this scenario, funding projects to implement large-scale pilot testbeds that combine the latest advances in Artificial Intelligence, High-Performance Computing, Cloud and Big Data technologies. The DeepHealth project is an example focused on the health sector whose main outcome is the DeepHealth toolkit, a European unified framework that offers deep learning and computer vision capabilities, completely adapted to exploit underlying heterogeneous High-Performance Computing, Big Data and cloud architectures, and ready to be integrated into any software platform to facilitate the development and deployment of new applications for specific problems in any sector. This toolkit is intended to be one of the European contributions to the field of AI. This chapter introduces the toolkit with its main components and complementary tools, providing a clear view to facilitate and encourage its adoption and wide use by the European community of developers of AI-based solutions and data scientists working in the healthcare sector and others.},
keywords = {deephealth, streamflow},
pubstate = {published},
tppubtype = {incollection}
}
Eduardo Quiñones, Jesus Perales, Jorge Ejarque, Asaf Badouh, Santiago Marco, Fabrice Auzanneau, François Galea, David González, José Ramón Hervás, Tatiana Silva, Iacopo Colonnelli, Barbara Cantalupo, Marco Aldinucci, Enzo Tartaglione, Rafael Tornero, José Flich, Jose Maria Martinez, David Rodriguez, Izan Catalán, Jorge Garcia, Carles Hernández
In: Terzo, Olivier, Martinovič, Jan (Ed.): HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision, pp. 191–216, CRC Press, Boca Raton, Florida, 2022, ISBN: 978-1-0320-0984-1.
Abstract | Links | BibTeX | Tags: deephealth, streamflow
@incollection{22:deephealth:HPCbook,
title = {The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud Computing Infrastructures for IA-based Medical Solutions},
author = {Eduardo Quiñones and Jesus Perales and Jorge Ejarque and Asaf Badouh and Santiago Marco and Fabrice Auzanneau and François Galea and David González and José Ramón Hervás and Tatiana Silva and Iacopo Colonnelli and Barbara Cantalupo and Marco Aldinucci and Enzo Tartaglione and Rafael Tornero and José Flich and Jose Maria Martinez and David Rodriguez and Izan Catalán and Jorge Garcia and Carles Hernández},
editor = {Olivier Terzo and Jan Martinovič},
url = {https://iris.unito.it/retrieve/handle/2318/1832050/912413/Preprint.pdf},
doi = {10.1201/9781003176664},
isbn = {978-1-0320-0984-1},
year = {2022},
date = {2022-01-01},
booktitle = {HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision},
pages = {191–216},
publisher = {CRC Press},
address = {Boca Raton, Florida},
chapter = {10},
abstract = {This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices.},
keywords = {deephealth, streamflow},
pubstate = {published},
tppubtype = {incollection}
}
Martin Golasowski, Jan Martinovič, Marc Levrier, Stephan Hachinger, Sophia Karagiorgou, Aikaterini Papapostolou, Spiros Mouzakitis, Ioannis Tsapelas, Monica Caballero, Marco Aldinucci, Jon Ander Gómez, Antony Chazapis, Jean-Thomas Acquaviva
Toward the Convergence of High-Performance Computing, Cloud, and Big Data Domains Book Section
In: Terzo, Olivier, Martinovič, Jan (Ed.): HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision, pp. 1–16, CRC Press, Boca Raton, Florida, 2022, ISBN: 978-1-0320-0984-1.
Abstract | Links | BibTeX | Tags: deephealth, streamflow
@incollection{22:intro:HPCbook,
title = {Toward the Convergence of High-Performance Computing, Cloud, and Big Data Domains},
author = {Martin Golasowski and Jan Martinovič and Marc Levrier and Stephan Hachinger and Sophia Karagiorgou and Aikaterini Papapostolou and Spiros Mouzakitis and Ioannis Tsapelas and Monica Caballero and Marco Aldinucci and Jon Ander Gómez and Antony Chazapis and Jean-Thomas Acquaviva},
editor = {Olivier Terzo and Jan Martinovič},
doi = {10.1201/9781003176664},
isbn = {978-1-0320-0984-1},
year = {2022},
date = {2022-01-01},
booktitle = {HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision},
pages = {1–16},
publisher = {CRC Press},
address = {Boca Raton, Florida},
chapter = {1},
abstract = {Convergence between big data, high-performance computing, and the cloud is the key driving factor for sustainable economic growth in the future. Technological advances in many fields are determined by competence to gain precise information from the large amounts of data collected, which in turn requires powerful computing resources. This chapter provides an overview on the evolution of the three fields and four different points of view on their convergence provided by the CYBELE, DeepHealth, Evolve, and LEXIS projects funded by the European Union under the Horizon 2020 Programme.},
keywords = {deephealth, streamflow},
pubstate = {published},
tppubtype = {incollection}
}
Dana Oniga, Barbara Cantalupo, Enzo Tartaglione, Daniele Perlo, Marco Grangetto, Marco Aldinucci, Federico Bolelli, Federico Pollastri, Michele Cancilla, Laura Canalini, Costantino Grana, Cristina Muñoz Alcalde, Franco Alberto Cardillo, Monica Florea
Applications of AI and HPC in the Health Domain Book Section
In: Terzo, Olivier, Martinovič, Jan (Ed.): HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision, pp. 217–239, CRC Press, Boca Raton, Florida, 2022, ISBN: 978-1-0320-0984-1.
Abstract | Links | BibTeX | Tags: deephealth, streamflow
@incollection{22:applications:HPCbook,
title = {Applications of AI and HPC in the Health Domain},
author = {Dana Oniga and Barbara Cantalupo and Enzo Tartaglione and Daniele Perlo and Marco Grangetto and Marco Aldinucci and Federico Bolelli and Federico Pollastri and Michele Cancilla and Laura Canalini and Costantino Grana and Cristina Muñoz Alcalde and Franco Alberto Cardillo and Monica Florea},
editor = {Olivier Terzo and Jan Martinovič},
doi = {10.1201/9781003176664},
isbn = {978-1-0320-0984-1},
year = {2022},
date = {2022-01-01},
booktitle = {HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision},
pages = {217–239},
publisher = {CRC Press},
address = {Boca Raton, Florida},
chapter = {11},
abstract = {This chapter presents the applications of artificial intelligence (AI) and high-computing performance (HPC) in the health domain, illustrated by the description of five of the use cases that are developed in the DeepHealth project. In the context of the European Commission supporting the use of AI and HPC in the health sector, DeepHealth Project is helping health experts process large quantities of images, putting at their disposal DeepLearning and computer vision techniques, combined in the DeepHealth toolkit and HPC infrastructures. The DeepHealth toolkit is tested and validated through 15 use cases, each of them representing a biomedical application. The most promising use cases are described in the chapter, which concludes with the value proposition and the benefits that DeepHealth toolkit offers to future end users.},
keywords = {deephealth, streamflow},
pubstate = {published},
tppubtype = {incollection}
}
Iacopo Colonnelli, Marco Aldinucci, Barbara Cantalupo, Luca Padovani, Sergio Rabellino, Concetto Spampinato, Roberto Morelli, Rosario Di Carlo, Nicolò Magini, Carlo Cavazzoni
Distributed workflows with Jupyter Journal Article
In: Future Generation Computer Systems, vol. 128, pp. 282–298, 2022, ISSN: 0167-739X.
Abstract | Links | BibTeX | Tags: across, deephealth, jupyter-workflow, streamflow
@article{21:FGCS:jupyflow,
title = {Distributed workflows with Jupyter},
author = {Iacopo Colonnelli and Marco Aldinucci and Barbara Cantalupo and Luca Padovani and Sergio Rabellino and Concetto Spampinato and Roberto Morelli and Rosario Di Carlo and Nicolò Magini and Carlo Cavazzoni},
url = {https://www.sciencedirect.com/science/article/pii/S0167739X21003976},
doi = {10.1016/j.future.2021.10.007},
issn = {0167-739X},
year = {2022},
date = {2022-01-01},
journal = {Future Generation Computer Systems},
volume = {128},
pages = {282–298},
abstract = {The designers of a new coordination interface enacting complex workflows have to tackle a dichotomy: choosing a language-independent or language-dependent approach. Language-independent approaches decouple workflow models from the host code's business logic and advocate portability. Language-dependent approaches foster flexibility and performance by adopting the same host language for business and coordination code. Jupyter Notebooks, with their capability to describe both imperative and declarative code in a unique format, allow taking the best of the two approaches, maintaining a clear separation between application and coordination layers but still providing a unified interface to both aspects. We advocate the Jupyter Notebooks' potential to express complex distributed workflows, identifying the general requirements for a Jupyter-based Workflow Management System (WMS) and introducing a proof-of-concept portable implementation working on hybrid Cloud-HPC infrastructures. As a byproduct, we extended the vanilla IPython kernel with workflow-based parallel and distributed execution capabilities. The proposed Jupyter-workflow (Jw) system is evaluated on common scenarios for High Performance Computing (HPC) and Cloud, showing its potential in lowering the barriers between prototypical Notebooks and production-ready implementations.},
keywords = {across, deephealth, jupyter-workflow, streamflow},
pubstate = {published},
tppubtype = {article}
}
2021
Carmelo Pino, Simone Palazzo, Francesca Trenta, Francesca Cordero, Ulas Bagci, Francesco Rundo, Sebastiano Battiato, Daniela Giordano, Marco Aldinucci, Concetto Spampinato
Interpretable Deep Model for Predicting Gene-Addicted Non-Small-Cell Lung Cancer in CT Scans Proceedings Article
In: 18th IEEE Intl. Symposium on Biomedical Imaging (ISBI), IEEE, Nice, France, 2021.
Abstract | Links | BibTeX | Tags: deephealth
@inproceedings{21:ct:isbi,
title = {Interpretable Deep Model for Predicting Gene-Addicted Non-Small-Cell Lung Cancer in CT Scans},
author = {Carmelo Pino and Simone Palazzo and Francesca Trenta and Francesca Cordero and Ulas Bagci and Francesco Rundo and Sebastiano Battiato and Daniela Giordano and Marco Aldinucci and Concetto Spampinato},
url = {https://iris.unito.it/retrieve/handle/2318/1790376/764762/21_ISBI_smallcell.pdf},
doi = {10.1109/ISBI48211.2021.9433832},
year = {2021},
date = {2021-04-01},
booktitle = {18th IEEE Intl. Symposium on Biomedical Imaging (ISBI)},
publisher = {IEEE},
address = {Nice, France},
abstract = {Genetic profiling and characterization of lung cancers have recently emerged as a new technique for targeted therapeutic treatment based on immunotherapy or molecular drugs. However, the most effective way to discover specific gene mutations through tissue biopsy has several limitations, from invasiveness to being a risky procedure. Recently, quantitative assessment of visual features from CT data has been demonstrated to be a valid alternative to biopsy for the diagnosis of gene-addicted tumors. In this paper, we present a deep model for automated lesion segmentation and classification as gene-addicted or not. The segmentation approach extends the 2D Tiramisu architecture for 3D segmentation through dense blocks and squeeze-and-excitation layers, while a multi-scale 3D CNN is used for lesion classification. We also train our model with adversarial samples, and show that this approach acts as a gradient regularizer and enhances model interpretability. We also built a dataset, the first of its nature, consisting of 73 CT scans annotated with the presence of a specific genomics profile. We test our approach on this dataset achieving a segmentation accuracy of 93.11% (Dice score) and a classification accuracy in identifying oncogene-addicted lung tumors of 82.00%.},
keywords = {deephealth},
pubstate = {published},
tppubtype = {inproceedings}
}
Gianluca Bontempi, Ricardo Chavarriaga, Hans De Canck, Emanuela Girardi, Holger Hoos, Iarla Kilbane‐Dawe, Tonio Ball, Ann Nowé, Jose Sousa, Davide Bacciu, Marco Aldinucci, Manlio De Domenico, Alessandro Saffiotti, Marco Maratea
The CLAIRE COVID-19 initiative: approach, experiences and recommendations Journal Article
In: Ethics and Information Technology, 2021.
Abstract | Links | BibTeX | Tags: deephealth
@article{21:eit:covidclaire,
title = {The CLAIRE COVID-19 initiative: approach, experiences and recommendations},
author = {Gianluca Bontempi and Ricardo Chavarriaga and Hans De Canck and Emanuela Girardi and Holger Hoos and Iarla Kilbane‐Dawe and Tonio Ball and Ann Nowé and Jose Sousa and Davide Bacciu and Marco Aldinucci and Manlio De Domenico and Alessandro Saffiotti and Marco Maratea},
url = {https://iris.unito.it/retrieve/handle/2318/1784271/747923/Bontempi2021_Article_TheCLAIRECOVID-19InitiativeApp-3.pdf},
doi = {10.1007/s10676-020-09567-7},
year = {2021},
date = {2021-02-01},
journal = {Ethics and Information Technology},
publisher = {Springer},
abstract = {A volunteer effort by Artificial Intelligence (AI) researchers has shown it can deliver significant research outcomes rapidly to help tackle COVID-19. Within two months, CLAIRE's self-organising volunteers delivered the World's first comprehensive curated repository of COVID-19-related datasets useful for drug-repurposing, drafted review papers on the role CT/X-ray scan analysis and robotics could play, and progressed research in other areas. Given the pace required and nature of voluntary efforts, the teams faced a number of challenges. These offer insights in how better to prepare for future volunteer scientific efforts and large scale, data-dependent AI collaborations in general. We offer seven recommendations on how to best leverage such efforts and collaborations in the context of managing future crises.},
keywords = {deephealth},
pubstate = {published},
tppubtype = {article}
}
Yasir Arfat, Gianluca Mittone, Roberto Esposito, Barbara Cantalupo, Gaetano Maria De Ferrari, Marco Aldinucci
A Review of Machine Learning for Cardiology Journal Article
In: Minerva cardiology and angiology, 2021.
Abstract | Links | BibTeX | Tags: deephealth, hpc4ai
@article{21:ai4numbers:minerva,
title = {A Review of Machine Learning for Cardiology},
author = {Yasir Arfat and Gianluca Mittone and Roberto Esposito and Barbara Cantalupo and Gaetano Maria De Ferrari and Marco Aldinucci},
url = {https://iris.unito.it/retrieve/handle/2318/1796298/780512/21_AI4numbers-preprint.pdf},
doi = {10.23736/s2724-5683.21.05709-4},
year = {2021},
date = {2021-01-01},
journal = {Minerva cardiology and angiology},
abstract = {This paper reviews recent cardiology literature and reports how Artificial Intelligence Tools (specifically, Machine Learning techniques) are being used by physicians in the field. Each technique is introduced with enough details to allow the understanding of how it works and its intent, but without delving into details that do not add immediate benefits and require expertise in the field. We specifically focus on the principal Machine Learning based risk scores used in cardiovascular research. After introducing them and summarizing their assumptions and biases, we discuss their merits and shortcomings. We report on how frequently they are adopted in the field and suggest why this is the case based on our expertise in Machine Learning. We complete the analysis by reviewing how corresponding statistical approaches compare with them. Finally, we discuss the main open issues in applying Machine Learning tools to cardiology tasks, also drafting possible future directions. Despite the growing interest in these tools, we argue that there are many still underutilized techniques: while Neural Networks are slowly being incorporated in cardiovascular research, other important techniques such as Semi-Supervised Learning and Federated Learning are still underutilized. The former would allow practitioners to harness the information contained in large datasets that are only partially labeled, while the latter would foster collaboration between institutions allowing building larger and better models.},
keywords = {deephealth, hpc4ai},
pubstate = {published},
tppubtype = {article}
}
Daniele D'Agostino, Pietro Liò, Marco Aldinucci, Ivan Merelli
Advantages of using graph databases to explore chromatin conformation capture experiments Journal Article
In: BMC Bioinformatics, vol. 22, no. 2, pp. 43–58, 2021, ISBN: 1471-2105.
Abstract | Links | BibTeX | Tags: deephealth, hpc4ai
@article{21:neohic:bmc,
title = {Advantages of using graph databases to explore chromatin conformation capture experiments},
author = {Daniele D'Agostino and Pietro Liò and Marco Aldinucci and Ivan Merelli},
url = {https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03937-0.pdf},
doi = {10.1186/s12859-020-03937-0},
isbn = {1471-2105},
year = {2021},
date = {2021-01-01},
journal = {BMC Bioinformatics},
volume = {22},
number = {2},
pages = {43–58},
abstract = {High-throughput sequencing Chromosome Conformation Capture (Hi-C) allows the study of DNA interactions and 3D chromosome folding at the genome-wide scale. Usually, these data are represented as matrices describing the binary contacts among the different chromosome regions. On the other hand, a graph-based representation can be advantageous to describe the complex topology achieved by the DNA in the nucleus of eukaryotic cells.},
keywords = {deephealth, hpc4ai},
pubstate = {published},
tppubtype = {article}
}
Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Matteo Pennisi, Concetto Spampinato, Marco Aldinucci
HPC Application Cloudification: The StreamFlow Toolkit Proceedings Article
In: Bispo, João, Cherubin, Stefano, Flich, José (Ed.): 12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021), pp. 5:1–5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, ISSN: 2190-6807.
Abstract | Links | BibTeX | Tags: deephealth, hpc4ai, streamflow
@inproceedings{colonnelli_et_al:OASIcs.PARMA-DITAM.2021.5,
title = {HPC Application Cloudification: The StreamFlow Toolkit},
author = {Iacopo Colonnelli and Barbara Cantalupo and Roberto Esposito and Matteo Pennisi and Concetto Spampinato and Marco Aldinucci},
editor = {João Bispo and Stefano Cherubin and José Flich},
url = {https://drops.dagstuhl.de/opus/volltexte/2021/13641/pdf/OASIcs-PARMA-DITAM-2021-5.pdf},
doi = {10.4230/OASIcs.PARMA-DITAM.2021.5},
issn = {2190-6807},
year = {2021},
date = {2021-01-01},
booktitle = {12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021)},
volume = {88},
pages = {5:1–5:13},
publisher = {Schloss Dagstuhl – Leibniz-Zentrum für Informatik},
address = {Dagstuhl, Germany},
series = {Open Access Series in Informatics (OASIcs)},
abstract = {Finding an effective way to improve accessibility to High-Performance Computing facilities, still anchored to SSH-based remote shells and queue-based job submission mechanisms, is an open problem in computer science. This work advocates a cloudification of HPC applications through a cluster-as-accelerator pattern, where computationally demanding portions of the main execution flow hosted on a Cloud Finding an effective way to improve accessibility to High-Performance Computing facilities, still anchored to SSH-based remote shells and queue-based job submission mechanisms, is an open problem in computer science. This work advocates a cloudification of HPC applications through a cluster-as-accelerator pattern, where computationally demanding portions of the main execution flow hosted on a Cloud infrastructure can be offloaded to HPC environments to speed them up. We introduce StreamFlow, a novel Workflow Management System that supports such a design pattern and makes it possible to run the steps of a standard workflow model on independent processing elements with no shared storage. We validated the proposed approach's effectiveness on the CLAIRE COVID-19 universal pipeline, i.e. a reproducible workflow capable of automating the comparison of (possibly all) state-of-the-art pipelines for the diagnosis of COVID-19 interstitial pneumonia from CT scans images based on Deep Neural Networks (DNNs).},
keywords = {deephealth, hpc4ai, streamflow},
pubstate = {published},
tppubtype = {inproceedings}
}
Fabrizio D'Ascenzo, Ovidio De Filippo, Guglielmo Gallone, Gianluca Mittone, Marco Agostino Deriu, Mario Iannaccone, Albert Ariza-Solé, Christoph Liebetrau, Sergio Manzano-Fernández, Giorgio Quadri, Tim Kinnaird, Gianluca Campo, Jose Paulo Simao Henriques, James M Hughes, Alberto Dominguez-Rodriguez, Marco Aldinucci, Umberto Morbiducci, Giuseppe Patti, Sergio Raposeiras-Roubin, Emad Abu-Assi, Gaetano Maria De Ferrari, Francesco Piroli, Andrea Saglietto, Federico Conrotto, Pierluigi Omedé, Antonio Montefusco, Mauro Pennone, Francesco Bruno, Pier Paolo Bocchino, Giacomo Boccuzzi, Enrico Cerrato, Ferdinando Varbella, Michela Sperti, Stephen B. Wilton, Lazar Velicki, Ioanna Xanthopoulou, Angel Cequier, Andres Iniguez-Romo, Isabel Munoz Pousa, Maria Cespon Fernandez, Berenice Caneiro Queija, Rafael Cobas-Paz, Angel Lopez-Cuenca, Alberto Garay, Pedro Flores Blanco, Andrea Rognoni, Giuseppe Biondi Zoccai, Simone Biscaglia, Ivan Nunez-Gil, Toshiharu Fujii, Alessandro Durante, Xiantao Song, Tetsuma Kawaji, Dimitrios Alexopoulos, Zenon Huczek, Jose Ramon Gonzalez Juanatey, Shao-Ping Nie, Masa-aki Kawashiri, Iacopo Colonnelli, Barbara Cantalupo, Roberto Esposito, Sergio Leonardi, Walter Grosso Marra, Alaide Chieffo, Umberto Michelucci, Dario Piga, Marta Malavolta, Sebastiano Gili, Marco Mennuni, Claudio Montalto, Luigi Oltrona Visconti, Yasir Arfat
Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets Journal Article
In: The Lancet, vol. 397, no. 10270, pp. 199–207, 2021, ISSN: 0140-6736.
Abstract | Links | BibTeX | Tags: ai, cardio, deephealth, hpc4ai
@article{21:lancet,
title = {Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets},
author = {Fabrizio D'Ascenzo and Ovidio De Filippo and Guglielmo Gallone and Gianluca Mittone and Marco Agostino Deriu and Mario Iannaccone and Albert Ariza-Solé and Christoph Liebetrau and Sergio Manzano-Fernández and Giorgio Quadri and Tim Kinnaird and Gianluca Campo and Jose Paulo Simao Henriques and James M Hughes and Alberto Dominguez-Rodriguez and Marco Aldinucci and Umberto Morbiducci and Giuseppe Patti and Sergio Raposeiras-Roubin and Emad Abu-Assi and Gaetano Maria De Ferrari and Francesco Piroli and Andrea Saglietto and Federico Conrotto and Pierluigi Omedé and Antonio Montefusco and Mauro Pennone and Francesco Bruno and Pier Paolo Bocchino and Giacomo Boccuzzi and Enrico Cerrato and Ferdinando Varbella and Michela Sperti and Stephen B. Wilton and Lazar Velicki and Ioanna Xanthopoulou and Angel Cequier and Andres Iniguez-Romo and Isabel Munoz Pousa and Maria Cespon Fernandez and Berenice Caneiro Queija and Rafael Cobas-Paz and Angel Lopez-Cuenca and Alberto Garay and Pedro Flores Blanco and Andrea Rognoni and Giuseppe Biondi Zoccai and Simone Biscaglia and Ivan Nunez-Gil and Toshiharu Fujii and Alessandro Durante and Xiantao Song and Tetsuma Kawaji and Dimitrios Alexopoulos and Zenon Huczek and Jose Ramon Gonzalez Juanatey and Shao-Ping Nie and Masa-aki Kawashiri and Iacopo Colonnelli and Barbara Cantalupo and Roberto Esposito and Sergio Leonardi and Walter Grosso Marra and Alaide Chieffo and Umberto Michelucci and Dario Piga and Marta Malavolta and Sebastiano Gili and Marco Mennuni and Claudio Montalto and Luigi Oltrona Visconti and Yasir Arfat},
url = {https://www.researchgate.net/profile/James_Hughes3/publication/348501148_Machine_learning-based_prediction_of_adverse_events_following_an_acute_coronary_syndrome_PRAISE_a_modelling_study_of_pooled_datasets/links/6002a81ba6fdccdcb858b6c2/Machine-learning-based-prediction-of-adverse-events-following-an-acute-coronary-syndrome-PRAISE-a-modelling-study-of-pooled-datasets.pdf},
doi = {10.1016/S0140-6736(20)32519-8},
issn = {0140-6736},
year = {2021},
date = {2021-01-01},
journal = {The Lancet},
volume = {397},
number = {10270},
pages = {199–207},
abstract = {Background The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. Methods Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). Findings The PRAISE score showed an AUC of 0.82 (95% CI 0.78-0.85) in the internal validation cohort and 0.92 (0.90-0.93) in the external validation cohort for 1-year all-cause death; an AUC of 0.74 (0.70-0.78) in the internal validation cohort and 0.81 (0.76-0.85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0.70 (0.66-0.75) in the internal validation cohort and 0.86 (0.82-0.89) in the external validation cohort for 1-year major bleeding. Interpretation A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making.},
keywords = {ai, cardio, deephealth, hpc4ai},
pubstate = {published},
tppubtype = {article}
}
Iacopo Colonnelli, Barbara Cantalupo, Ivan Merelli, Marco Aldinucci
StreamFlow: cross-breeding cloud with HPC Journal Article
In: IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 1723–1737, 2021.
Abstract | Links | BibTeX | Tags: deephealth, hpc4ai, streamflow
@article{20Lstreamflow:tetc,
title = {StreamFlow: cross-breeding cloud with HPC},
author = {Iacopo Colonnelli and Barbara Cantalupo and Ivan Merelli and Marco Aldinucci},
url = {https://arxiv.org/pdf/2002.01558},
doi = {10.1109/TETC.2020.3019202},
year = {2021},
date = {2021-01-01},
journal = {IEEE Transactions on Emerging Topics in Computing},
volume = {9},
number = {4},
pages = {1723–1737},
abstract = {Workflows are among the most commonly used tools in a variety of execution environments. Many of them target a specific environment; few of them make it possible to execute an entire workflow in different environments, e.g. Kubernetes and batch clusters. We present a novel approach to workflow execution, called StreamFlow, that complements the workflow graph with the declarative description of potentially complex execution environments, and that makes it possible the execution onto multiple sites not sharing a common data space. StreamFlow is then exemplified on a novel bioinformatics pipeline for single cell transcriptomic data analysis workflow.},
keywords = {deephealth, hpc4ai, streamflow},
pubstate = {published},
tppubtype = {article}
}