Alberto Riccardo Martinelli
PhD Student
Computer Science Department, University of Turin
Parallel Computing group
Via Pessinetto 12, 10149 Torino – Italy
E-mail: albertoriccardo.martinelli AT unito.it
Short Bio
Alberto Riccardo Martinelli is a Ph.D. student in computer science at the University of Turin. He received his master’s degree with honors in Computer Science from the University of Turin.
Fields of interest:
- Parallel computing
- Distributed computing
- High performance computing
Publications
2023
Alberto Riccardo Martinelli, Massimo Torquati, Marco Aldinucci, Iacopo Colonnelli, Barbara Cantalupo
CAPIO: a Middleware for Transparent I/O Streaming in Data-Intensive Workflows Proceedings Article
In: 2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC), IEEE, Goa, India, 2023.
Abstract | Links | BibTeX | Tags: admire, capio, eupex, icsc
@inproceedings{23:hipc:capio,
title = {CAPIO: a Middleware for Transparent I/O Streaming in Data-Intensive Workflows},
author = {Alberto Riccardo Martinelli and Massimo Torquati and Marco Aldinucci and Iacopo Colonnelli and Barbara Cantalupo},
url = {https://iris.unito.it/retrieve/27380f37-0978-409e-a9d8-2b5e95a4bb85/CAPIO-HiPC23-preprint.pdf},
doi = {10.1109/HiPC58850.2023.00031},
year = {2023},
date = {2023-12-01},
booktitle = {2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC)},
publisher = {IEEE},
address = {Goa, India},
abstract = {With the increasing amount of digital data available for analysis and simulation, the class of I/O-intensive HPC workflows is fated to quickly expand, further exacerbating the performance gap between computing, memory, and storage technologies. This paper introduces CAPIO (Cross-Application Programmable I/O), a middleware capable of injecting I/O streaming capabilities into file-based workflows, improving the computation-I/O overlap without the need to change the application code. The contribution is twofold: 1) at design time, a new I/O coordination language allows users to annotate workflow data dependencies with synchronization semantics; 2) at run time, a user-space middleware automatically and transparently to the user turns a workflow batch execution into a streaming execution according to the semantics expressed in the configuration file. CAPIO has been tested on synthetic benchmarks simulating typical workflow I/O patterns and two real-world workflows. Experiments show that CAPIO reduces the execution time by 10% to 66% for data-intensive workflows that use the file system as a communication medium.},
keywords = {admire, capio, eupex, icsc},
pubstate = {published},
tppubtype = {inproceedings}
}
Giorgio Audrito, Alberto Riccardo Martinelli, Gianluca Torta
Parallelising an Aggregate Programming Framework with Message-Passing Interface Proceedings Article
In: 2023 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), pp. 140–145, 2023.
@inproceedings{23:acsos:fcppmpi,
title = {Parallelising an Aggregate Programming Framework with Message-Passing Interface},
author = {Giorgio Audrito and Alberto Riccardo Martinelli and Gianluca Torta},
doi = {10.1109/ACSOS-C58168.2023.00054},
year = {2023},
date = {2023-01-01},
booktitle = {2023 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)},
pages = {140–145},
keywords = {HPC},
pubstate = {published},
tppubtype = {inproceedings}
}
Javier Garcia-Blas, Genaro Sanchez-Gallegos, Cosmin Petre, Alberto Riccardo Martinelli, Marco Aldinucci, Jesus Carretero
Hercules: Scalable and Network Portable In-Memory Ad-Hoc File System for Data-Centric and High-Performance Applications Proceedings Article
In: Cano, José, Dikaiakos, Marios D., Papadopoulos, George A., Pericàs, Miquel, Sakellariou, Rizos (Ed.): Euro-Par 2023: Parallel Processing, pp. 679–693, Springer Nature Switzerland, Cham, 2023, ISBN: 978-3-031-39698-4.
Abstract | BibTeX | Tags: admire, HPC
@inproceedings{10.1007/978-3-031-39698-4_46,
title = {Hercules: Scalable and Network Portable In-Memory Ad-Hoc File System for Data-Centric and High-Performance Applications},
author = {Javier Garcia-Blas and Genaro Sanchez-Gallegos and Cosmin Petre and Alberto Riccardo Martinelli and Marco Aldinucci and Jesus Carretero},
editor = {José Cano and Marios D. Dikaiakos and George A. Papadopoulos and Miquel Pericàs and Rizos Sakellariou},
isbn = {978-3-031-39698-4},
year = {2023},
date = {2023-01-01},
booktitle = {Euro-Par 2023: Parallel Processing},
pages = {679–693},
publisher = {Springer Nature Switzerland},
address = {Cham},
abstract = {The growing demands for data processing by new data-intensive applications are putting pressure on the performance and capacity of HPC storage systems. The advancement in storage technologies, such as NVMe and persistent memory, are aimed at meeting these demands. However, relying solely on ultra-fast storage devices is not cost-effective, leading to the need for multi-tier storage hierarchies to move data based on its usage. To address this issue, ad-hoc file systems have been proposed as a solution. They utilise the available storage of compute nodes, such as memory and persistent storage, to create a temporary file system that adapts to the application behaviour in the HPC environment. This work presents the design, implementation, and evaluation of a distributed ad-hoc in-memory storage system (Hercules), highlighting the new communication model included in Hercules. This communication model takes advantage of the Unified Communication X framework (UCX). This solution leverages the capabilities of RDMA protocols, including Infiniband, Onmipath, shared memory, and zero-copy transfers. The preliminary evaluation results show excellent network utilisation compared with other existing technologies.},
keywords = {admire, HPC},
pubstate = {published},
tppubtype = {inproceedings}
}
Iacopo Colonnelli, Bruno Casella, Gianluca Mittone, Yasir Arfat, Barbara Cantalupo, Roberto Esposito, Alberto Riccardo Martinelli, Doriana Medić, Marco Aldinucci
Federated Learning meets HPC and cloud Proceedings Article
In: Bufano, Filomena, Riggi, Simone, Sciacca, Eva, Schillirò, Francesco (Ed.): Astrophysics and Space Science Proceedings, pp. 193–199, Springer, Catania, Italy, 2023, ISBN: 978-3-031-34167-0, (Keynote talk).
Abstract | Links | BibTeX | Tags: across, eupilot, streamflow
@inproceedings{22:ml4astro,
title = {Federated Learning meets HPC and cloud},
author = {Iacopo Colonnelli and Bruno Casella and Gianluca Mittone and Yasir Arfat and Barbara Cantalupo and Roberto Esposito and Alberto Riccardo Martinelli and Doriana Medić and Marco Aldinucci},
editor = {Filomena Bufano and Simone Riggi and Eva Sciacca and Francesco Schillirò},
url = {https://iris.unito.it/retrieve/3ac66baa-9d9a-4e9f-94a5-13700694d8aa/ML4Astro.pdf},
doi = {10.1007/978-3-031-34167-0_39},
isbn = {978-3-031-34167-0},
year = {2023},
date = {2023-01-01},
booktitle = {Astrophysics and Space Science Proceedings},
volume = {60},
pages = {193–199},
publisher = {Springer},
address = {Catania, Italy},
abstract = {HPC and AI are fated to meet for several reasons. This article will discuss some of them and argue why this will happen through the set of methods and technologies that underpin cloud computing. As a paradigmatic example, we present a new federated learning system that collaboratively trains a deep learning model in different supercomputing centers. The system is based on the StreamFlow workflow manager designed for hybrid cloud-HPC infrastructures.},
howpublished = {Machine Learning for Astrophysics (ML4ASTRO)},
note = {Keynote talk},
keywords = {across, eupilot, streamflow},
pubstate = {published},
tppubtype = {inproceedings}
}
2021
Giovanni Agosta, William Fornaciari, Andrea Galimberti, Giuseppe Massari, Federico Reghenzani, Federico Terraneo, Davide Zoni, Carlo Brandolese, Massimo Celino, Francesco Iannone, Paolo Palazzari, Giuseppe Zummo, Massimo Bernaschi, Pasqua D'Ambra, Sergio Saponara, Marco Danelutto, Massimo Torquati, Marco Aldinucci, Yasir Arfat, Barbara Cantalupo, Iacopo Colonnelli, Roberto Esposito, Alberto Riccardo Martinelli, Gianluca Mittone, Olivier Beaumont, Berenger Bramas, Lionel Eyraud-Dubois, Brice Goglin, Abdou Guermouche, Raymond Namyst, Samuel Thibault, Antonio Filgueras, Miquel Vidal, Carlos Alvarez, Xavier Martorell, Ariel Oleksiak, Michal Kulczewski, Alessandro Lonardo, Piero Vicini, Francesco Lo Cicero, Francesco Simula, Andrea Biagioni, Paolo Cretaro, Ottorino Frezza, Pier Stanislao Paolucci, Matteo Turisini, Francesco Giacomini, Tommaso Boccali, Simone Montangero, Roberto Ammendola
TEXTAROSSA: Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale Proceedings Article
In: Proc. of the 24th Euromicro Conference on Digital System Design (DSD), IEEE, Palermo, Italy, 2021.
Abstract | Links | BibTeX | Tags: streamflow, textarossa
@inproceedings{21:DSD:textarossa,
title = {TEXTAROSSA: Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale},
author = {Giovanni Agosta and William Fornaciari and Andrea Galimberti and Giuseppe Massari and Federico Reghenzani and Federico Terraneo and Davide Zoni and Carlo Brandolese and Massimo Celino and Francesco Iannone and Paolo Palazzari and Giuseppe Zummo and Massimo Bernaschi and Pasqua D'Ambra and Sergio Saponara and Marco Danelutto and Massimo Torquati and Marco Aldinucci and Yasir Arfat and Barbara Cantalupo and Iacopo Colonnelli and Roberto Esposito and Alberto Riccardo Martinelli and Gianluca Mittone and Olivier Beaumont and Berenger Bramas and Lionel Eyraud-Dubois and Brice Goglin and Abdou Guermouche and Raymond Namyst and Samuel Thibault and Antonio Filgueras and Miquel Vidal and Carlos Alvarez and Xavier Martorell and Ariel Oleksiak and Michal Kulczewski and Alessandro Lonardo and Piero Vicini and Francesco Lo Cicero and Francesco Simula and Andrea Biagioni and Paolo Cretaro and Ottorino Frezza and Pier Stanislao Paolucci and Matteo Turisini and Francesco Giacomini and Tommaso Boccali and Simone Montangero and Roberto Ammendola},
doi = {10.1109/DSD53832.2021.00051},
year = {2021},
date = {2021-08-01},
booktitle = {Proc. of the 24th Euromicro Conference on Digital System Design (DSD)},
publisher = {IEEE},
address = {Palermo, Italy},
abstract = {To achieve high performance and high energy effi- ciency on near-future exascale computing systems, three key technology gaps needs to be bridged. These gaps include: en- ergy efficiency and thermal control; extreme computation effi- ciency via HW acceleration and new arithmetics; methods and tools for seamless integration of reconfigurable accelerators in heterogeneous HPC multi-node platforms. TEXTAROSSA aims at tackling this gap through a co-design approach to heterogeneous HPC solutions, supported by the integration and extension of HW and SW IPs, programming models and tools derived from European research.},
keywords = {streamflow, textarossa},
pubstate = {published},
tppubtype = {inproceedings}
}
Marco Aldinucci, Valentina Cesare, Iacopo Colonnelli, Alberto Riccardo Martinelli, Gianluca Mittone, Barbara Cantalupo
Practical Parallelizazion of a Laplace Solver with MPI Proceedings Article
In: Iannone, Francesco (Ed.): ENEA CRESCO in the fight against COVID-19, pp. 21–24, ENEA, 2021.
Abstract | BibTeX | Tags: hpc4ai
@inproceedings{21:laplace:enea,
title = {Practical Parallelizazion of a Laplace Solver with MPI},
author = {Marco Aldinucci and Valentina Cesare and Iacopo Colonnelli and Alberto Riccardo Martinelli and Gianluca Mittone and Barbara Cantalupo},
editor = {Francesco Iannone},
year = {2021},
date = {2021-01-01},
booktitle = {ENEA CRESCO in the fight against COVID-19},
pages = {21–24},
publisher = {ENEA},
abstract = {This work exposes a practical methodology for the semi-automatic parallelization of existing code. We show how a scientific sequential code can be parallelized through our approach. The obtained parallel code is only slightly different from the starting sequential one, providing an example of how little re-designing our methodology involves. The performance of the parallelized code, executed on the CRESCO6 cluster, is then exposed and discussed. We also believe in the educational value of this approach and suggest its use as a teaching device for students.},
keywords = {hpc4ai},
pubstate = {published},
tppubtype = {inproceedings}
}
Marco Aldinucci, Valentina Cesare, Iacopo Colonnelli, Alberto Riccardo Martinelli, Gianluca Mittone, Barbara Cantalupo, Carlo Cavazzoni, Maurizio Drocco
Practical Parallelization of Scientific Applications with OpenMP, OpenACC and MPI Journal Article
In: Journal of Parallel and Distributed Computing, vol. 157, pp. 13–29, 2021.
Abstract | Links | BibTeX | Tags: HPC
@article{21:jpdc:loop,
title = {Practical Parallelization of Scientific Applications with OpenMP, OpenACC and MPI},
author = {Marco Aldinucci and Valentina Cesare and Iacopo Colonnelli and Alberto Riccardo Martinelli and Gianluca Mittone and Barbara Cantalupo and Carlo Cavazzoni and Maurizio Drocco},
url = {https://iris.unito.it/retrieve/handle/2318/1792557/770851/Practical_Parallelization_JPDC_preprint.pdf},
doi = {10.1016/j.jpdc.2021.05.017},
year = {2021},
date = {2021-01-01},
journal = {Journal of Parallel and Distributed Computing},
volume = {157},
pages = {13–29},
abstract = {This work aims at distilling a systematic methodology to modernize existing sequential scientific codes with a little re-designing effort, turning an old codebase into emphmodern code, i.e., parallel and robust code. We propose a semi-automatic methodology to parallelize scientific applications designed with a purely sequential programming mindset, possibly using global variables, aliasing, random number generators, and stateful functions. We demonstrate that the same methodology works for the parallelization in the shared memory model (via OpenMP), message passing model (via MPI), and General Purpose Computing on GPU model (via OpenACC). The method is demonstrated parallelizing four real-world sequential codes in the domain of physics and material science. The methodology itself has been distilled in collaboration with MSc students of the Parallel Computing course at the University of Torino, that applied it for the first time to the project works that they presented for the final exam of the course. Every year the course hosts some special lectures from industry representatives, who present how they use parallel computing and offer codes to be parallelizeda.},
keywords = {HPC},
pubstate = {published},
tppubtype = {article}
}