CAPIO: Cross-Application Programmable 1/0O

Alberto Riccardo Martinelli, Massimo Torquati® and Marco
Aldinuccit

University of Turin, Computer Science Dept.!
University of Pisa, Computer Science Dept. 2

September 14, 2022

What is CAPIO?

CAPIO is an user-space middleware that optimize and
coordinates the data transfer between workflow applications
communicating via files without modifying the original code
by reducing the pressure on the I/O subsytem enabling in-situ
and in-transit data transformations.

What is CAPIO?

It's a complex definition. To better understand, CAPIO can be
represented as the composition of two levels of abstraction.

@ CAPIO runtime
@ CAPIO coordination language

Background: 1/O in HPC systems

@ The gap between processors and I/O subsystems’ speed
has continuously been increasing.

Background: 1/O in HPC systems

@ The gap between processors and I/O subsystems’ speed
has continuously been increasing.

@ In HPC systems usually is installed a distributed file
system, i.e. the data is scattered in different machines.

Background: 1/O in HPC systems

@ The gap between processors and I/O subsystems’ speed
has continuously been increasing.

@ In HPC systems usually is installed a distributed file
system, i.e. the data is scattered in different machines.

@ A lot of applications exchange data using files.

State of the art

@ Alternatives to the POSIX I/O API (MPI 1/O, DAMARIS,
HDFS5, etc...)

@ Data staging systems (NORNS)
@ Ad Hoc Filesystems (GekkoFS, UnifyFS, etc...)

The problem with the state of the art

@ The POSIX API is still the most used.

The problem with the state of the art

@ The POSIX API is still the most used.
@ There is a lot of legacy code that no one want to modify.

The problem with the state of the art

@ The POSIX API is still the most used.
@ There is a lot of legacy code that no one want to modify.

@ Some tools do not resolve the bottleneck problem (they
rely on the file system).

The problem with the state of the art

@ The POSIX API is still the most used.
@ There is a lot of legacy code that no one want to modify.

@ Some tools do not resolve the bottleneck problem (they
rely on the file system).

@ Most tools do not exploit streaming communications.

The problem with the state of the art

@ The POSIX API is still the most used.
@ There is a lot of legacy code that no one want to modify.

@ Some tools do not resolve the bottleneck problem (they
rely on the file system).

@ Most tools do not exploit streaming communications.

@ Most tools focus on the single application, not on
workflows.

How does CAPIO advance the state of the art?

The CAPIO runtime Transforms a batch execution in a

streaming execution.

I
App W |
LW
! w
|5
| I e : @ CAPIO
= 5 Q
! |8
|
App Q |
in 13 | Q
|
¥

The CAPIO runtime removes the I/O operations from
the critical path of the workflow.

App W App W
out 3 out f3
- ﬁ>]
App Q App Q
in f3 in f3

Legacy workflow.

Element 0 Element 1 Elemen[2 Element 3

faglo o

Processes

CAPIO workflow.

Element 0 Element1 Element2 Element 3

P uolo) OYoD)
el ototolo

CAPIO stub library (APD nhn mEE G

linked in the logical adress
B —0) .

|

CAPIO broker
~~MPI parallel code
1 deamon per PE

The data distribution
ca be programmed

CAPIO coordination language.

The CAPIO coordination language allows the user to express
the 1/0 graph. The I/O graph represents the data
communicated between (parallel and/or distributed)
applications of a workflow.

Why is it useful?

The coordination language allows to optimize the data
transfer between applications and to perform in-situ and
in-transit data transformation through a plug-in system.

From the 1/O graph to the execution environment

In order to optimize the data transfer, we need to know where
the applications (and its processes) will be executed.

CAPIO: Cross-application programmable 1/0

In summary, these are the main features of CAPIO:
@ Enhancement of the I/O performance

CAPIO: Cross-application programmable 1/0

In summary, these are the main features of CAPIO:
@ Enhancement of the I/O performance

@ From a batch execution to a streaming execution

CAPIO: Cross-application programmable 1/0

In summary, these are the main features of CAPIO:
@ Enhancement of the I/O performance
@ From a batch execution to a streaming execution

@ No changes to the original code

CAPIO: Cross-application programmable 1/0

In summary, these are the main features of CAPIO:
@ Enhancement of the I/O performance
@ From a batch execution to a streaming execution
@ No changes to the original code

@ Programmable inter-applications data movement through
a configuration file

CAPIO: Cross-application programmable 1/0

In summary, these are the main features of CAPIO:

@ Enhancement of the I/O performance

@ From a batch execution to a streaming execution

@ No changes to the original code

@ Programmable inter-applications data movement through
a configuration file

@ Programmable in-situ and in-transit data transformation
through plugins

