
CAPIO: Cross-Application Programmable I/O

Alberto Riccardo Martinelli1, Massimo Torquati2 and Marco
Aldinucci1

University of Turin, Computer Science Dept.1

University of Pisa, Computer Science Dept. 2

September 14, 2022



What is CAPIO?

CAPIO is an user-space middleware that optimize and
coordinates the data transfer between workflow applications
communicating via files without modifying the original code
by reducing the pressure on the I/O subsytem enabling in-situ
and in-transit data transformations.



What is CAPIO?

It’s a complex definition. To better understand, CAPIO can be
represented as the composition of two levels of abstraction.

CAPIO runtime

CAPIO coordination language



Background: I/O in HPC systems

The gap between processors and I/O subsystems’ speed
has continuously been increasing.

In HPC systems usually is installed a distributed file
system, i.e. the data is scattered in different machines.

A lot of applications exchange data using files.



Background: I/O in HPC systems

The gap between processors and I/O subsystems’ speed
has continuously been increasing.

In HPC systems usually is installed a distributed file
system, i.e. the data is scattered in different machines.

A lot of applications exchange data using files.



Background: I/O in HPC systems

The gap between processors and I/O subsystems’ speed
has continuously been increasing.

In HPC systems usually is installed a distributed file
system, i.e. the data is scattered in different machines.

A lot of applications exchange data using files.



State of the art

Alternatives to the POSIX I/O API (MPI I/O, DAMARIS,
HDF5, etc...)

Data staging systems (NORNS)

Ad Hoc Filesystems (GekkoFS, UnifyFS, etc...)



The problem with the state of the art

The POSIX API is still the most used.

There is a lot of legacy code that no one want to modify.

Some tools do not resolve the bottleneck problem (they
rely on the file system).

Most tools do not exploit streaming communications.

Most tools focus on the single application, not on
workflows.



The problem with the state of the art

The POSIX API is still the most used.

There is a lot of legacy code that no one want to modify.

Some tools do not resolve the bottleneck problem (they
rely on the file system).

Most tools do not exploit streaming communications.

Most tools focus on the single application, not on
workflows.



The problem with the state of the art

The POSIX API is still the most used.

There is a lot of legacy code that no one want to modify.

Some tools do not resolve the bottleneck problem (they
rely on the file system).

Most tools do not exploit streaming communications.

Most tools focus on the single application, not on
workflows.



The problem with the state of the art

The POSIX API is still the most used.

There is a lot of legacy code that no one want to modify.

Some tools do not resolve the bottleneck problem (they
rely on the file system).

Most tools do not exploit streaming communications.

Most tools focus on the single application, not on
workflows.



The problem with the state of the art

The POSIX API is still the most used.

There is a lot of legacy code that no one want to modify.

Some tools do not resolve the bottleneck problem (they
rely on the file system).

Most tools do not exploit streaming communications.

Most tools focus on the single application, not on
workflows.



CAPIO

How does CAPIO advance the state of the art?



The CAPIO runtime Transforms a batch execution in a

streaming execution.



The CAPIO runtime removes the I/O operations from

the critical path of the workflow.



Legacy workflow.



CAPIO workflow.



CAPIO coordination language.

The CAPIO coordination language allows the user to express
the I/O graph. The I/O graph represents the data
communicated between (parallel and/or distributed)
applications of a workflow.



Why is it useful?

The coordination language allows to optimize the data
transfer between applications and to perform in-situ and
in-transit data transformation through a plug-in system.



From the I/O graph to the execution environment

In order to optimize the data transfer, we need to know where
the applications (and its processes) will be executed.



CAPIO: Cross-application programmable I/O

In summary, these are the main features of CAPIO:

Enhancement of the I/O performance

From a batch execution to a streaming execution

No changes to the original code

Programmable inter-applications data movement through
a configuration file

Programmable in-situ and in-transit data transformation
through plugins



CAPIO: Cross-application programmable I/O

In summary, these are the main features of CAPIO:

Enhancement of the I/O performance

From a batch execution to a streaming execution

No changes to the original code

Programmable inter-applications data movement through
a configuration file

Programmable in-situ and in-transit data transformation
through plugins



CAPIO: Cross-application programmable I/O

In summary, these are the main features of CAPIO:

Enhancement of the I/O performance

From a batch execution to a streaming execution

No changes to the original code

Programmable inter-applications data movement through
a configuration file

Programmable in-situ and in-transit data transformation
through plugins



CAPIO: Cross-application programmable I/O

In summary, these are the main features of CAPIO:

Enhancement of the I/O performance

From a batch execution to a streaming execution

No changes to the original code

Programmable inter-applications data movement through
a configuration file

Programmable in-situ and in-transit data transformation
through plugins



CAPIO: Cross-application programmable I/O

In summary, these are the main features of CAPIO:

Enhancement of the I/O performance

From a batch execution to a streaming execution

No changes to the original code

Programmable inter-applications data movement through
a configuration file

Programmable in-situ and in-transit data transformation
through plugins


